Part Number Hot Search : 
2A102KT UC3875C H838524 ADL55 GJSD1804 J110A CCF5515K P4202
Product Description
Full Text Search
 

To Download IRGPH20S Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Previous Datasheet
Index
Next Data Sheet
PD - 9.1138
IRGPH20S
INSULATED GATE BIPOLAR TRANSISTOR
Features
* Switching-loss rating includes all "tail" losses * Optimized for line frequency operation (to 400Hz) See Fig. 1 for Current vs. Frequency curve
G E C
Standard Speed IGBT
VCES = 1200V VCE(sat) 3.3V
@VGE = 15V, IC = 6.6A
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.
TO-247AC
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM VGE EARV PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw.
Max.
1200 10 6.6 20 20 20 5.0 60 24 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m)
Units
V A
V mJ W
C
Thermal Resistance
Parameter
RJC RCS RJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
-- -- -- --
Typ.
-- 0.24 -- 6 (0.21)
Max.
2.1 -- 40 --
Units
C/W g (oz)
Revision 0
C-39
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPH20S
Electrical Characteristics @ T = 25C (unless otherwise specified) J
V(BR)CES V(BR)ECS
V(BR)CES/TJ
VCE(on)
VGE(th) VGE(th)/TJ gfe ICES IGES
Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 1200 -- -- V VGE = 0V, IC = 250A Emitter-to-Collector Breakdown Voltage 20 -- -- V VGE = 0V, IC = 1.0A Temperature Coeff. of Breakdown Voltage -- 1.3 -- V/C VGE = 0V, IC = 1.0mA Collector-to-Emitter Saturation Voltage -- 2.2 3.3 IC = 6.6A VGE = 15V -- 2.9 -- V IC = 10A See Fig. 2, 5 -- 2.9 -- IC = 6.6A, T J = 150C Gate Threshold Voltage 3.0 -- 5.5 VCE = VGE, IC = 250A Temperature Coeff. of Threshold Voltage -- -12 -- mV/C VCE = VGE, IC = 250A Forward Transconductance 1.5 3.0 -- S VCE = 100V, IC = 6.6A Zero Gate Voltage Collector Current -- -- 250 A VGE = 0V, VCE = 1200V -- -- 1000 VGE = 0V, VCE = 1200V, T J = 150C Gate-to-Emitter Leakage Current -- -- 100 nA VGE = 20V
Switching Characteristics @ T = 25C (unless otherwise specified) J
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. Max. Units Conditions 16 24 IC = 6.6A 5.8 8.7 nC VCC = 400V See Fig. 8 4.0 6.0 VGE = 15V 28 -- TJ = 25C 32 -- ns IC = 6.6A, V CC = 960V 930 1400 VGE = 15V, RG = 50 850 1550 Energy losses include "tail" 0.57 -- 5.4 -- mJ See Fig. 9, 10, 11, 14 6.0 9.0 28 -- TJ = 150C, 45 -- ns IC = 6.6A, V CC = 960V 1100 -- VGE = 15V, RG = 50 1800 -- Energy losses include "tail" 10 -- mJ See Fig. 10, 14 13 -- nH Measured 5mm from package 360 -- VGE = 0V 24 -- pF VCC = 30V See Fig. 7 4.8 -- = 1.0MHz
Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC=80%(VCES), VGE=20V, L=10H, RG= 50, ( See fig. 13a ) Repetitive rating; pulse width limited by maximum junction temperature. Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot.
C-40
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPH20S
15
F o r b o th :
Tria n g u la r w a v e :
12
Load Current (A)
D u ty c y c le : 5 0 % TJ = 1 2 5 C T s in k = 9 0 C G a te d riv e a s s p e c ifie d P o w e r D is s ip a tio n = 1 5 W
C la m p v o lta g e : 8 0 % o f ra te d
9
S q u are w av e: 6 0 % o f ra te d v o lta g e
6
3
Id e a l d io d e s
0 0.1 1 10
A
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
100
100
IC , Collector-to-Emitter Current (A)
TJ = 25C
10
TJ = 150C
IC , Collector-to-Emitter Current (A)
10
TJ = 150C
TJ = 25C
1
0.1 0.1 1
VGE = 15V 20s PULSE WIDTH A
10
1 5 10
VCC = 100V 5s PULSE WIDTH A
15 20
VCE , Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
C-41
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPH20S
10
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
VGE = 15V
5.0
VGE = 15V 80s PULSE WIDTH I C = 10A
8
4.0
6
3.0
I C = 6.6A
4
2.0
I C = 3.3A
2
1.0
0 25 50 75 100 125
A
150
0.0 -60 -40 -20 0 20 40 60 80
A
100 120 140 160
TC , Case Temperature (C)
TC, Case Temperature (C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature
10
T he rm al R e sp ons e (Z thJ C )
1
D = 0 .5 0
0 .2 0 0 .1 0 0 .0 5
PD M
0.1
0 .0 2 0 .0 1
t
S IN G L E P U L S E (T H E R M A L R E S P O N S E )
N o te s: 1 . D u ty fa c to r D = t 1 /t 2
1 t2
0.01 0.00001
2 . P e a k TJ = P D M x Z thJ C + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , R e c ta n gu la r P u ls e D ura tio n (s e c )
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
C-42
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPH20S
600
500
VGE , Gate-to-Emitter Voltage (V)
V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc
20
VCE = 400V I C = 6.6A
16
C, Capacitance (pF)
400
Cies
12
300
200
Coes
8
4
100
Cres
0 1 10
A
100
0 0 4 8 12 16
A
20
VCE, Collector-to-Emitter Voltage (V)
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
5.60
Total Switching Losses (mJ)
5.56
Total Switching Losses (mJ)
VCC = 960V VGE = 15V T C = 25C I C = 6.6A
100
RG = 50 V GE = 15V V CC = 960V
5.52
I C = 10A
10
I C = 6.6A
5.48
I C = 3.3A
5.44
5.40 0 10 20 30 40 50
A
60
1 -60
A
-40 -20 0 20 40 60 80 100 120 140 160
RG , Gate Resistance ()
TC , Case Temperature (C)
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Case Temperature
C-43
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPH20S
16 100
12
IC , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG = 50 T C = 150C V CC = 960V V GE = 15V
VGE = 20V TJ = 125C
10
SAFE OPERATING AREA
8
1
4
0 0 2 4 6 8 10
A
12
0.1 1 10 100 1000
A
10000
I C , Collector-to-Emitter Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Refer to Section D for the following: Appendix G: Section D - page D-9 Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit Fig. 14a - Switching Loss Test Circuit Fig. 14b - Switching Loss Waveform Package Outline 3 - JEDEC Outline TO-247AC (TO-3P) Section D - page D-13
C-44
To Order


▲Up To Search▲   

 
Price & Availability of IRGPH20S

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X